Abstract

We experimentally studied two important parameters of helium-cooled superconducting quantum interference devices (SQUIDs) in the voltage bias mode: the dynamic resistance Rd and the flux-to-current transfer coefficient ∂i/∂Φ, with different junction shunt resistors RJ. We investigated a voltage-biased SQUID using the direct readout current-to-voltage converter scheme involving an operational amplifier. At higher RJ, the flux-to-voltage conversion coefficient ∂V/∂Φ becomes sufficiently large to effectively suppress the room-temperature amplifier's noise without any need for additional feedback circuits. The McCumber parameter limits the rise of ∂V/∂Φ. We discuss the performance of voltage-biased SQUIDs at different effective McCumber parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call