Abstract
Radial basis function-generated finite differences (RBF-FD) based on the combination of polyharmonic splines (PHS) with high degree polynomials have recently emerged as a powerful and robust numerical approach for the local interpolation and derivative approximation of functions over scattered node layouts. Among the key features, (i) high orders of accuracy can be achieved without the need of selecting a shape parameter or the issues related to numerical ill-conditioning, and (ii) the harmful edge effects associated to the use of high order polynomials (better known as Runge’s phenomenon) can be overcome by simply increasing the stencil size for a fixed polynomial degree. The present study complements our previous results, providing an analytical insight into RBF-FD approximations augmented with polynomials. It is based on a closed-form expression for the interpolant, which reveals the mechanisms underlying these features, including the role of polynomials and RBFs in the interpolant, the approximation error, and the behavior of the cardinal functions near boundaries. Numerical examples are included for illustration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.