Abstract

BackgroundTotal temporomandibular joint (TMJ) prosthesis is an effective and reliable method of joint reconstruction. However, there is still an urgent need to design a new TMJ prosthesis because of no commercially available TMJ prosthesis appropriate for the clinical application on the Chinese population. This study was introduced to prospectively confirm the safety and effectiveness of a new TMJ prosthesis with customized design and 3D printing additive fabrication in clinical application.MethodsPatients with unilateral end-stage TMJ osteoarthrosis were recruited in this study from Nov 2016 to Mar 2017. Computed tomography scans for all patients were obtained and transformed into three-dimensional (3D) reconstruction models. The customized TMJ prosthesis consisted of three components including the fossa, condylar head, and mandibular handle units, which were designed based on the anatomy of the TMJ and were fabricated using the 3D printing technology. The prominent characters of the prosthesis were the customized design of the fossa component with a single ultra-high-molecular-weight polyethylene and the connection mechanism between the condylar head (Co–Cr–Mo alloy) and mandibular handle components (Ti6Al4 V alloy). The clinical follow-up, radiographic evaluation and laboratory indices were all done to analyze the prosthesis’ outcomes in the clinical application.Results12 consecutive patients were included in the study. There were no complications (infection of the surgical wound, damage of liver and kidney, displacement, breakage, or loosening of the prosthesis) found after surgery. Pain, diet, mandibular function, and maximal interincisal opening showed significant improvements after surgery. But the lateral movement was limited to the non-operated side and the mandible deviated towards the operated side on opening mouth following surgery.ConclusionsThe presented TMJ prosthesis is considered an innovative product in TMJ Yang’s system, which is unique compared to other prostheses for the special design and 3D printing additive manufacture. Moreover, the prosthesis is very safe and efficient for clinical use.Trial registration Prospective reports on Chinese customized total temporomandibular joint prosthesis reconstruction cases, ChiCTR-ONC-16009712. Registered 22 Nov 2016, http://www.chictr.org.cn/showproj.aspx?proj=16091

Highlights

  • Total temporomandibular joint (TMJ) prosthesis is an effective and reliable method of joint reconstruction

  • The biomechanical and biological properties tests, including the fatigue resistance test, functional load capacities, wear testing, and animal experiments, have been all conducted by School of Materials Science and Engineering in Shanghai Jiao Tong University, in accordance to the testing methods accomplished by the Zimmer Biomet and TMJ concepts [18,19,20], and the results proved that this prosthesis functions well both in vitro and in vivo

  • This study introduces a new TMJ prosthesis, which is totally different from the commercially available Zimmer Biomet and TMJ Concepts prostheses as for the design perspective, in addition to the manufacturing process

Read more

Summary

Introduction

Total temporomandibular joint (TMJ) prosthesis is an effective and reliable method of joint reconstruction. Temporomandibular joint (TMJ) is often affected by a wide spectrum of disorders, including extra-articular and intra-articular pathologies which usually present with various clinical symptoms including pain in the preauricular region, limitation of mouth opening, malocclusion, or jaw deformity [1, 2]. The former is typically managed non-surgically, whereas the latter is often managed surgically. The stock Zimmer Biomet has a registration certificate for clinical use in China, and it is much cheaper than the customized products, it does not always match the Chinese patient’s TMJ anatomy very well [12,13,14]. Various autogenous tissues, encountering the risks of a second operation for donor site, including the costochondral graft [16] or sternoclavicular joint graft [17], are frequently harvested as an alternative to the artificial prosthesis in China to replace the severely diseased joint

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call