Abstract
Recent research reflects the assessment of customer satisfaction from different perspectives, an important aspect in all sectors that must be expressed in measurable parameters of organization performance. By reviewing the literature, we noticed the lack of a specific indicator to quantify the tripartite relation: customer satisfaction—employee performance—company performance. Therefore, based on Six Sigma and Lean Six Sigma methods, the paper introduces an innovative measurement tool named the Spc indicator (The Assessment System of Employee Performance according to Customer Satisfaction) and the related implementation methodology (named ITA). The aim of the paper is to implement an innovative tool to improve the efficiency of employee performance assessment systems in relation to company performance in services and industry sectors through customer satisfaction assessment. By using AR and VR as implementation technologies, our present results extend and compare the results from other pilot research made by authors in the e-commerce sector. The results point out that mystery shoppers and electronic word-of-mouth (eWOM) applied in e-commerce are more efficient than AR and VR technologies applied in services and industry, as reflected in the company’s performance. Furthermore, customer–employee interactions and communications with eWOM in e-commerce are more efficient than WOM used in services and industry. This paper contains both theoretical and practical contributions by offering a new, short-time innovative tool for the continuous improvement of the company with applications in different fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.