Abstract

Here, we report a new technique to synthesize carbon-doped MgB2 powder. Chitosan was innovatively used as the carbon source during the synthesis of boron from boron oxide. This allowed the introduction of local defects, which later on served as pinning centers in MgB2, in the boron lattice itself, avoiding the traditional and time consuming ways of ex situ MgB2 doping (e.g. ball milling). Two volume percentages of C-doping have been tried and its effect on the superconducting properties, evaluated by magnetic and transport measurements, are discussed here. Morphological analysis by scanning electron microscopy revealed nano-metric grains’ distribution in the boron and MgB2 powder. Mono-filamentary MgB2 wires have been fabricated by an ex situ powder-in-tube technique by using the thus prepared carbon-doped MgB2 and pure MgB2 powders. Transport property measurements on these wires were made and compared with MgB2 wire produced using commercial boron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.