Abstract

Thin wires required for a new type of superconducting level sensors are investigated in some virtual situations. The sensors are composed of an MgB2 wire with metal sheath and a non-superconducting wire, which are located in parallel and connected in series, to determine a level of liquid hydrogen in a container with higher reliability. The operations of the level sensors during refill and discharge of liquid hydrogen are simulated numerically by solving a one-dimensional heat balance equation. The wires have a metal material with almost constant dependence of resistivity on temperature such as cupronickel or stainless steel. The wire lengths are assumed to be 1 meter. By using the obtained numerical results, the optimum compositions of the MgB2 and non-superconducting wires are discussed for several parameters such as materials and volume fractions of metal sheaths, temperatures of pressurized liquid hydrogen, and conditions of evaporated gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call