Abstract

Soil moisture is a crucial variable in evaluating soil properties and its interaction with the atmosphere, yet none of the techniques currently employed is fully adequate for evaluating the water content in soil over an area of hectares and depth of tens of centimeters. In recent times, it has been shown how the water content over this volume can be accurately assessed measuring changes in the epithermal flux of cosmic neutrons, which is extremely sensitive to the moderation caused by hydrogen. The instruments employed for neutron flux measurements are usually neutron counters, covered with moderator coatings for enhancing their sensitivity in the epithermal energy range. On the other hand, the worldwide shortage of {}^{3}He caused a considerable increase in the costs associated with the manufacturing of proportional counters based on this gas, which were widely employed for their great sensitivity and noise rejection capability. In this work, we developed a {}^{3}He-free neutron spectrometer for performing these measurements, which detects neutrons in the energy range from 0.01 ev to 1 GeV. The reconstruction of the energy spectrum allows a more accurate evaluation of the epithermal neutron flux and provides other information which improves the quality of soil moisture measurements. Irradiations performed with neutron sources of {}^{241}Am and AmBe allowed to evaluate the spectrometric capability of the instrument, whereas the measurements of cosmic neutrons were employed to assess its sensitivity to cosmic radiation. The sensitivity of the instrument is slightly less than the one of the neutron counters currently employed, yet the access to the spectrometric information should provide greater accuracy in the epithermal flux measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call