Abstract

Search and rescue path planning is known to be computationally hard, and most techniques developed to solve practical size problems have been unsuccessful to estimate an optimality gap. A mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-agent discrete search and rescue (SAR) path planning problem, maximizing cumulative probability of success in detecting a target. It extends a single agent decision model to a multi-agent setting capturing anticipated feedback information resulting from possible observation outcomes during projected path execution while expanding possible agent actions to all possible neighboring move directions, considerably augmenting computational complexity. A network representation is further exploited to alleviate problem modeling, constraint specification, and speed-up computation. The proposed MIP approach uses CPLEX problem-solving technology in promptly providing near-optimal solutions for realistic problems, while offering a robust upper bound derived from Lagrangean integrality constraint relaxation. Modeling extension to a closed-loop environment to incorporate real-time action outcomes over a receding time horizon can even be envisioned given acceptable run-time performance. A generalized parameter-driven objective function is then proposed and discussed to suitably define a variety of user-defined objectives. Computational results reporting the performance of the approach clearly show its value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.