Abstract
The management of medical waste is a complex task that necessitates effective strategies to mitigate health risks, comply with regulations, and minimize environmental impact. In this study, a novel approach based on collaboration and technological advancements is proposed. By utilizing colored bags with identification tags, smart containers with sensors, object recognition sensors, air and soil control sensors, vehicles with Global Positioning System (GPS) and temperature humidity sensors, and outsourced waste treatment, the system optimizes waste sorting, storage, and treatment operations. Additionally, the incorporation of explainable artificial intelligence (XAI) technology, leveraging scikit-learn, xgboost, catboost, lightgbm, and skorch, provides real-time insights and data analytics, facilitating informed decision-making and process optimization. The integration of these cutting-edge technologies forms the foundation of an efficient and intelligent medical waste management system. Furthermore, the article highlights the use of genetic algorithms (GA) to solve vehicle routing models, optimizing waste collection routes and minimizing transportation time to treatment centers. Overall, the combination of advanced technologies, optimization algorithms, and XAI contributes to improved waste management practices, ultimately benefiting both public health and the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.