Abstract

In this article, the researcher introduces a hybrid chain code for shape encoding, as well as lossless and lossy bi-level image compression. The lossless and lossy mechanisms primarily depend on agent movements in a virtual world and are inspired by many agent-based models, including the Paths model, the Bacteria Food Hunt model, the Kermack–McKendrick model, and the Ant Colony model. These models influence the present technique in three main ways: the movements of agents in a virtual world, the directions of movements, and the paths where agents walk. The agent movements are designed, tracked, and analyzed to take advantage of the arithmetic coding algorithm used to compress the series of movements encountered by the agents in the system. For the lossless mechanism, seven movements are designed to capture all the possible directions of an agent and to provide more space savings after being encoded using the arithmetic coding method. The lossy mechanism incorporates the seven movements in the lossless algorithm along with extra modes, which allow certain agent movements to provide further reduction. Additionally, two extra movements that lead to more substitutions are employed in the lossless and lossy mechanisms. The empirical outcomes show that the present approach for bi-level image compression is robust and that compression ratios are much higher than those obtained by other methods, including JBIG1 and JBIG2, which are international standards in bi-level image compression. Additionally, a series of paired-samples t-tests reveals that the differences between the current algorithms’ results and the outcomes from all the other approaches are statistically significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call