Abstract

Circulating fluidized bed (CFB) combustion systems are increasingly used as superior coal burning systems in power generation due to their higher efficiency and lower emissions. However, because of their non-linearity and complex behavior, it is difficult to build a comprehensive model that incorporates all the system dynamics. In this paper, a mathematical model of the circulating fluidized bed combustion system based on mass and energy conservation equations was successfully extracted. Using these correlations, a state space dynamical model oriented to bed temperature has been obtained based on subspace method. Bed temperature, which influences boiler overall efficiency and the rate of pollutants emission, is one of the most significant parameters in the operation of these types of systems. Having dynamic and parametric uncertainties in the model, a robust control algorithm based on linear matrix inequalities (LMI) have been applied to control the bed temperature by input parameters, i.e. coal feed rate and fluidization velocity. The controller proposed properly sets the temperature to our desired range with a minimum tracking error and minimizes the sensitivity of the closed-loop system to disturbances caused by uncertainties such as change in feeding coal, while the settling time of the system is significantly decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.