Abstract

SDIE technology is an effective means to address freshwater scarcity, but faces challenges such as thermal management, salt scale resistance, and high energy efficiency. Herein, a 3D Janus Foam with a hydrophobic surface layer and a hydrophilic inner layer was synthesized for efficient seawater desalination. Such strategic layering provides effective thermal management, resulting in a heat loss of only ∼1.13 % throughout the photothermal conversion process. The Janus Foam’s ability to prevent salt accumulation while maintaining high evaporation efficiency over extended periods is a critical improvement over current technology. Under 1 kW m−2, the evaporation rate of the Janus Foam is as high as 1.7898 kg m−2 h−1 with an efficiency of 96.87 %. Even under actual seawater conditions, the evaporation rate of the foam remains at 1.7426 kg m−2 h−1 with an efficiency of 91.83 %, demonstrating its high energy efficiency and adaptability to different operating environments. In conclusion, the innovative design of the 3D Janus foam offers a promising avenue for addressing global freshwater scarcity through enhanced solar interfacial evaporation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.