Abstract

In this study, convection-diffusion equation is solved numerically using four different space discretization methods namely first-order upwinding, second-order central difference, cubic (partially upwinded) and cubic-TVD (Total Variation Diminishing) techniques. All methods are compared with the analytical solution. The first-order method is not close to the analytical solution due to the numerical dispersion. The higher-order techniques reduce numerical dispersion. However, they cause another numerical error, unphysical oscillation. This study proposes an innovative approach on cubic-TVD method to eliminate undesired oscillations. Proposed model decreases numerical errors significantly compared to previously developed techniques. Moreover, numerical results of presented model quite close to the analytical solution. Finally, all Matlab codes of numerical and analytical solutions for convection-diffusion equation are added to Appendix in order to facilitate other researchers’ work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.