Abstract

Coronary heart disease (CHD) is a leading cause of mortality globally and poses a significant threat to public health. Coronary angiography (CAG) is a gold standard for the clinical diagnosis of CHD, but its invasiveness restricts its widespread application. In this study, we utilized a pulse diagnostic device equipped with pressure and photoelectric sensors to synchronously and non-invasively capture wrist pressure pulse waves and fingertip photoplethysmography (FPPG) of patients undergoing CAG. The extracted features were utilized in constructing random forest-based models to assessing the severity of coronary artery lesions. Notably, Model 3, incorporating both wrist pulse and FPPG features, surpassed Model 1 (solely utilizing wrist pulse features) and Model 2 (solely utilizing FPPG features). Model3 achieved an Accuracy, Precision, Recall, and F1-score of 78.79%, 78.69%, 78.79%, and 78.70%, respectively. Compared to Model1 and Model2, Model 3 exhibited improvements by 4.55%, 5.25%, 4.55%, and 5.12%, and 6.06%, 6.58%, 6.06%, and 6.54% respectively. This fusion of wrist pulse and FPPG features in Model 3 highlights the advantages of multi-source information fusion for model optimization. Additionally, this research provides invaluable insights into the novel development of diagnostic devices imbued with TCM principles and their potential in managing cardiovascular diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call