Abstract

A novel type of injectable biomaterial with an elastic softening transition is described. The material enables invivo shaping, followed by induction of 3D stable vascularized tissue. The synthesis of the injectable meta-biomaterial is instructed by extensive numerical simulation as a suspension of irregularly fragmented, highly porous sponge-like microgels. The irregular particle shape dramatically enhances yield strain for invivo stability against deformation. Porosity of the particles, along with friction between internal surfaces, provides the elastic softening transition. This emergent metamaterial property enables the material to reversibly change stiffness during deformation, allowing native tissue properties to be matched over a wide range of deformation amplitudes. After subcutaneous injection in mice, predetermined shapes can be sculpted manually. The 3D shape is maintained during excellent host tissue integration, with induction of vascular connective tissue that persists to the end of one-year follow-up. The geometrical design is compatible with many hydrogel materials, including cell-adhesion motives for cell transplantation. The injectable meta-biomaterial therefore provides new perspectives in soft tissue engineering and regenerative medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.