Abstract
PurposeWith the development of 3D printing or additive manufacturing (AM), curved layer fused deposition modeling (CLFDM) has been researched to cope with the flat layer AM inherited problems, such as stair-step error, anisotropy and the time-cost and material-cost problems from the supporting structures. As one type of CLFDM, cylindrical slicing has obtained some research attention. However, it can only deal with rotationally symmetrical parts with a circular slicing layer, limiting its application. This paper aims to propose a ray-based slicing method to increase the inter-layer strength of flat layer-based AM parts to deal with more general revolving parts.Design/methodology/approachSpecifically, the detailed algorithm and implementation steps are given with several examples to enable readers to understand it better. The combination of ray-based slicing and helical path planning has been proposed to consider the nonuniform path spacing between the adjacent paths in the same curved layer. A brief introduction of the printing system is given, mainly including a 3D printer and the graphical user interface.FindingsThe preliminary experiments are successfully conducted to verify the feasibility and versatility of the proposed and improved slicing method for the revolving thin-wall parts based on a rotary 3D printer.Originality/valueThis research is early-stage work, and the authors are intended to explore the process and show the initial feasibility of ray-based slicing for revolving thin-wall parts using a rotary 3D printer. In general, this research provides a novel and feasible slicing method for multiaxis rotary 3D printers, making manufacturing revolving thin-wall and complex parts possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.