Abstract

The investigation of strain hardening in metals is complex, with the outcome depending on experimental conditions, that may involve microstructural history, temperature and loading rate. Hardening is commonly measured, after mechanical processing, through controlled mechanical testing, in ways that either distinguish elastic (stress) from total deformation measurements, or by identifying plastic slip contributions. In this paper, we conjecture that hardening effects can be unraveled through statistical analysis of total strain fluctuations during the evolution sequence of profiles, measured in-situ, through digital image correlation. In particular, we hypothesize that the work hardening exponent is related, through a power-law relationship, to a particular exponent arising from principal component analysis. We demonstrate a scaling analysis for synthetic data produced by widely applicable crystal plasticity models for polycrystalline solids.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.