Abstract
We present a new class of near-horizon geometries which solve Einstein's vacuum equations, including a negative cosmological constant, in all even dimensions greater than four. Spatial sections of the horizon are inhomogeneous S^2-bundles over any compact Kaehler-Einstein manifold. For a given base, the solutions are parameterised by one continuous parameter (the angular momentum) and an integer which determines the topology of the horizon. In six dimensions the horizon topology is either S^2 x S^2 or CP^2 # -CP^2. In higher dimensions the S^2-bundles are always non-trivial, and for a fixed base, give an infinite number of distinct horizon topologies. Furthermore, depending on the choice of base we can get examples of near-horizon geometries with a single rotational symmetry (the minimal dimension for this is eight). All of our horizon geometries are consistent with all known topology and symmetry constraints for the horizons of asymptotically flat or globally Anti de Sitter extremal black holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.