Abstract

Nuclear spin hyperpolarization derived from parahydrogen can enable nuclear magnetic resonance spectroscopy and imaging with sensitivity enhancements exceeding four orders of magnitude. The NMR signal enhancement is proportional to 4xp-1, where xp is the parahydrogen mole fraction. For convenience, many labs elect to carry out the ortho–para conversion at 77 K where 50% enrichment is obtained. In theory, enrichment to 100% yields an automatic three-fold increase in the NMR signal enhancement. Herein, construction and testing of a simple and inexpensive continuous-flow converter for high para-enrichment is described. During operation, the converter is immersed in liquid helium contained in a transport dewar of the type commonly found in NMR labs for filling superconducting magnets. A maximum enrichment of 97.3±1.9% at 30 K was observed at 4.5 bar and 300 mL/min flow rate. The theoretically predicted 2.9-fold increase in the signal enhancement factor was confirmed in the heterogeneous hydrogenation of propene to propane over a PdIn/SBA-15 catalyst. The relatively low-cost to construct and operate this system could make high parahydrogen enrichment, and the associated increase in the parahydrogen-derived NMR signals, more widely accessible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.