Abstract

In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the one is maximally monotone and the other is monotone and Lipschitz continuous. Under standard assumptions, we prove the weak convergence theorem of the proposed algorithm. We show that the algorithm is flexible to use by choosing the variable stepsizes and two different algorithms are shown by choosing constant stepsize and update stepsize. Moreover, we apply our algorithms to solve data classification using the Wisconsin original breast cancer data set as a training set. We also compare our algorithms with the other two algorithms to show the efficiency of the algorithm and show suitably learns the training dataset and generalizes well to a hold-out dataset of the algorithm by considering overfitting. Finally, we apply our algorithms to solve signal recovery and show the efficiency of the algorithm by compare with the other two algorithms. The results of data classification and signal recovery showed that choosing the right stepsizes of the algorithm would be a good efficient for the different problems. AMS subject classification46T99, 47B02, 47H05, 47J25, 49M37.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.