Abstract

Future optoelectronic devices and their low-cost roll-to-roll production require mechanically flexible transparent electrodes (TEs) and substrate materials. Indium tin oxide (ITO) is the most widely used TE because of its high optical transmission and low electrical sheet resistance. However, ITO, besides being expensive, has very poor performance under mechanical stress because of its fragile oxide nature. Alternative TE materials have thus been sought. Here we report the development of a multilayer TiO2/Ag/Al-doped ZnO TE structure and an ITO-free polymer solar cell (PSC) incorporating it. Electro-optical performances close to those of ITO can be achieved for the proposed TE and corresponding PSC with an additional advantage in their mechanical flexibility, as demonstrated by the fact that the cell efficiency maintains 94% of its initial value (6.6%) after 400 cycles of bending, with 6 and 3 cm maximum and minimum radii, respectively. Instead of common plastic materials, our work uses a very thin (0.14 mm) flexible glass substrate with several benefits, such as the possibility of high-temperature processes, superior antipermeation properties against oxygen and moisture, and improved film adhesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call