Abstract

This paper aims to use a visual-based control mechanism to control a quadrotor type aerial robot which is in pursuit of a moving target. The nonlinear nature of a quadrotor, on the one hand, and the difficulty of obtaining an exact model for it, on the other hand, constitute two serious challenges in designing a controller for this UAV. A potential solution for such problems is the use of intelligent control methods such as those that rely on artificial neural networks and other similar approaches. In addition to the two mentioned problems, another problem that emerges due to the moving nature of a target is the uncertainty that exists in the target image. By employing an artificial neural network with a Radial Basis Function (RBF) an indirect adaptive neural controller has been designed for a quadrotor robot in search of a moving target. The results of the simulation for different paths show that the quadrotor has efficiently tracked the moving target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.