Abstract

For a better understanding of the relationship between the Doppler power and erythrocyte aggregation of whole blood under steady flow in a conduit, the effects of Doppler angle, fibrinogen concentration, and hematocrit were investigated in a mock flow loop. The results show that, at a mean shear rate of 102 s(-1), there was minimal angular dependence; but at a mean shear rate of 52 s(-1), there was a weak angular dependence as the Doppler angle was varied from 40 degrees to 70 degrees . These results suggest that there was, perhaps, no or little alignment of the red cell aggregates at high shear rates. The Doppler power was found to increase nonlinearly as the fibrinogen concentration was increased; and the effect of other plasma proteins on red cell aggregation may not be negligible, although fibrinogen is the dominant factor. The results show that the variation of the Doppler power over the lumen is hematocrit dependent for hematocrits below 26%

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call