Abstract

Although a number of recent studies have demonstrated that the echogenicity of blood varies as a function of time under pulsatile flow, the fundamental mechanisms responsible for it are still uncertain. To better understand this phenomenon, the Doppler power from porcine blood and polystyrene microsphere suspensions was measured at the center of the tube as functions of two crucial parameters, flow velocity and stroke rate (for pulsatile flow), under steady and pulsatile flow in a mock flow loop. In the present study, the experimental results were obtained with a 10-MHz pulsed Doppler system with a frequency response estimated more accurately by electronic injection, and validated by comparing to the radiofrequency (RF) signal acquired from the same Doppler instrument. The results show that the Doppler power from microspheres and porcine red blood cell (RBC) suspensions did not vary appreciably (< 2 dB), with either the speed or stroke rate (for pulsatile flow only) under steady and pulsatile flow. It was found that the Doppler power from porcine whole blood under steady flow decreased with the speed by approximately 13 dB from 3 to 33 cm/s and was only 3 dB higher than that from RBC suspension at 33 cm/s, suggesting minimal RBC aggregation in whole blood at this speed. The apparent cyclic variation from whole blood was observed at 20 and 40 beats/min (BPM). The cyclic variation became more obvious as the speed and stroke rate decreased. The mean Doppler power over a cycle increased as the peak speed decreased. The Doppler power reached a maximum near peak systole and a minimum at late diastole at the center of the tube. This pattern cannot be explained by RBC aggregation due to the shear rate alone, and may be attributed to acceleration and deceleration along with aggregation. The cyclic variation was not observed at 60 BPM, probably because of a lack of time for aggregation to occur. (E-mail: paeng@psu.edu)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.