Abstract

The objective of this research was to compare the adaptation in the overall intaglio surface, peripheral/posterior palatal seal area, and primary bearing area of the 3D-printed complete denture produced in 0, 45, and 90° build angles. A reference edentulous maxillary arch model was scanned to design virtual denture bases with computer-aided manufacturing (CAD) software with standard tessellation language (STL) files as output. Denture bases were fabricated by printing with a digital light processing (DLP) technique and divided into 3 groups according to build angles of 0°, 45°, and 90° (n = 10). To assess the adaptation, each STL file of the intaglio denture base was superimposed on the STL file of the reference model using surface-matching software. The adaptation was reported in root mean square error (RMSE) values and statically compared using one-way analyses of variance (ANOVA) and followed by the Turkey's test for multiple comparisons with a significance level of α = 0.05. Overall, intaglio surface adaptation of denture bases printed from three angles had no significant difference in adaption. In the peripheral/posterior palatal seal area, denture bases printed at a 90° build angle showed significantly better adaption than other groups. In the primary bearing area, denture bases printed at 45° and 90° had no significant difference in denture adaptation; however, they exhibited better denture base adaptation than the 0° group significantly. The build angle has no effect on adaptation in the overall intaglio surface area. The build angle of 90° provided the best adaptation in the peripheral/posterior palatal seal area. The 45° and 90° build angles provided better adaptation than 0° in the primary stress-bearing area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call