Abstract

This in vitro study compared the adaptation of denture bases fabricated by injection molding (IM), compression molding (CM), liquid crystal display (LCD), and digital light processing (DLP) techniques. A definitive maxillary cast was duplicated using a silicone mold to create 40 gypsum casts that were laser scanned before any fabrication procedures were initiated. For the DLP and LCD groups, 20 denture bases (10 in each group) were virtually designed and manufactured referring to the digitalized data. For the CM and IM groups, 20 denture bases (10 in each group) were molded using gypsum models. A total of 40 gypsum models and their corresponding denture bases were scanned. The scanned intaglio surface of each denture base was superimposed on the scanned reference cast to compare the degree of tissue surface adaptation. The three-dimensional surface deviations of the total intaglio surface, denture border apex, palatal vault, and crest of the ridge were evaluated on the basis of the best fit algorithm technique using inspection software. The data were statistically analyzed using one-way ANOVA and Tukey's multiple comparison test (α=0.05). According to the superimposing results, for the total intaglio surface, the lowest deviation was present on the injection-molded group and the highest deviation occurred on the LCD group. For the palatal vault, the lowest deviation was present on the DLP group and the highest deviation occurred in the compression molded group. For the crest of the ridge, the lowest deviation was present in the injection-molded group and the highest deviation occurred in the LCD group. For the denture border apex, the lowest deviation was present in the DLP group and the highest deviation occurred in the LCD group. Maxillary denture bases fabricated using DLP and IM techniques showed higher surface adaptation than the bases fabricated using LCD and CM techniques. Among the conventional techniques, higher compatible dentures can be produced with IM; among the additive techniques, higher compatible dentures can be produced with DLP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.