Abstract
Intestinal epithelial cells assemble and maintain a polarized, highly organized membrane-cytoskeleton array, the brush border. We describe an in vitro, cell contact-induced brush border assembly model using the Caco-2BBe clones. Subconfluent cells were 'depolarized' by brief passage through suspension culture in the presence of cytochalasin D and re-plated on filters at high density in low-Ca2+ medium. Upon return to regular medium, these small, rounded cells with bleb-like protrusions formed, over the course of 19 days, a polarized monolayer of tall, columnar cells with a well-defined brush border. Ultrastructural changes were documented by both transmission and scanning electron microscopy. The earliest events of microvillar assembly coincided with a short period of cell aggregation. Intercellular cysts were occasionally observed within these aggregates, and junction formation between cells which had no contact with the filter was also observed. Monolayer formation was completed within 48 hours, and cell height steadily increased approximately 3.5-fold over 19 days. Concurrent with monolayer formation and the increase in cell height, sparse microvilli with a few actin core filaments gradually became more dense and better organized. By the third day, the actin core bundles had begun to extend into the subjacent cytoplasm, while terminal web assembly was underway at five days. The mature morphology of the brush border was first observed at nine days, although cell height and microvillar density continued to increase during the subsequent ten days. Microvillar density rose approximately nine-fold throughout brush border assembly in the Caco-2BBe cells. With the exception of the formation of cellular aggregates at the onset of the time course, this sequence of morphological changes is comparable to that observed during brush border assembly in embryonic intestinal epithelial cells. The Caco-2BBe assembly model provides a useful system in which to investigate various molecular aspects of brush border assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.