Abstract

While many studies have examined residue levels in beeswax, little is known about the levels that pose a risk for honey bee development. In an in vitro study, we aimed to assess the toxicity of pesticides in wax for worker larvae using coumaphos as a model substance. First, we reared larvae in beeswax with the aim to correlate the larval toxicity to the corresponding levels of coumaphos in beeswax. In a second step, we tested to which extent coumaphos migrates from the beeswax into the larval diet and if such dietary levels are toxic to larvae.We observed dose-related toxicity when larvae were exposed to coumaphos concentrations in beeswax from 30 to 100 mg/kg. The lethal concentration in 50% of the individuals (LC50) was calculated to be 55.9 mg/kg, while the no observed effect concentration (NOEC) for exposure of larvae to coumaphos in wax was 20 mg/kg. Additional test series without larvae allowed to assess the migration of coumaphos from the beeswax into the diet. The resulting dietary coumaphos concentrations were four to five times lower than the initial concentrations in wax. In accordance, the LC50 for chronic exposure of larvae to coumaphos in the diet was 12.5 mg/kg, which was 4.5 times lower than the LC50 obtained for wax exposure. Finally, a coumaphos level of 20 mg/kg in wax led to a dietary concentration of 3.9 mg/kg that was close to the NOEC of 3 mg/kg obtained in the diet.In conclusion, both experimental approaches suggest that coumaphos concentrations of up to 20 mg/kg in wax are non-lethal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call