Abstract

Statins, a class of drugs that can effectively remove cholesterol from serum, are used to regulate plasma total cholesterol and reduce the risk of cardiovascular diseases, but it is still unclear whether the drug are modulated by gut microbiota or the structures of gut microbiota are shaped by statins. We investigated the interactions between statins and the human gut microbiota during the in vitro fermentation process by 16S rRNA gene sequencing, gas chromatography (GC), and high-performance liquid chromatography (HPLC) analyses. The presence of fluvastatin (FLU2) specifically promoted the growth of Escherichia/Shigella, Ruminococcaceae UCG 014, and Sutterella. However, the composition of the gut bacterial microbiota remained relatively static in samples treated with rosuvastatin (ROS), simvastatin (SIM), and atorvastatin (ATO). The PICRUSt program predicted moderate differences in the functional categories related to the biosynthesis of other secondary metabolites, cellular processes and signaling, and signal transduction in the FLU2 fermentation samples. Our study revealed substantial variation in the structure and function of microbiomes from the FLU2-treated samples. In addition, short-chain fatty acids (SCFAs) were also significantly decreased in FLU2-treated samples compared with the samples treated with other stains. Statins can be degraded by the human gut microbiota in vitro, and the degradation rate was approximately 7%–30% and 19%–48% after fermentation was allowed to proceed for 24 h and 48 h, respectively. Generally, FLU2 could largely shape the composition and function of human gut microbiota, which resulted in changes in the production of SCFAs. In turn, all statins could be degraded or modified by the gut microbiota. Our study paves the way for elucidating statin-gut microbiota interactions in vitro towards the improvement of the host health and personalized medicine.

Highlights

  • The gastrointestinal tract, the largest digestive and excretive organ in the human body, is colonized by a vast, complex, and dynamic consortium of microorganisms [1]

  • Our aims were to discover if there are changes in the gut bacterial microbiota and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways induced by different statins, statins are degraded or modified by gut microbiota, and whether the data would provide an explanation for the potential effects of statins on human health

  • Analysis of different statins on human gut bacterial community in vitro and their potential functions saturation as a function of sequence depth, suggesting that most of the bacterial sequences were captured in all samples

Read more

Summary

Introduction

The gastrointestinal tract, the largest digestive and excretive organ in the human body, is colonized by a vast, complex, and dynamic consortium of microorganisms [1].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.