Abstract

In this communication, a novel poly(vinyl alcohol) (PVA)/apatite-like nanocomposite films were successfully synthesized using an in situ hydrothermal process at low temperatures and a solution casting method for a facile and effective fabrication process. One step in situ process, comprising nucleation and precipitation of apatite-like nanoparticles in the presence of PVA molecules of obtained PVA/apatite-like nanocomposites. The morphological, structural, thermal, and mechanical properties of the nanocomposites were studied. The morphological analysis confirmed that this process produced amorphous apatite-like nanoparticles in the PVA solution that were homogenously distributed with controlled particle sizes of less than 20nm in diameter. The incorporation of low quantities of apatite-like nanoparticles into the PVA matrix could significantly improve the mechanical strength of the resultant biocomposite film, which suggests an excellent load transfer between the apatite and the PVA matrix. This improvement in mechanical strength is due to the effective bonding of the filler nanoparticles in the PVA matrix during the hydrothermal reaction, which is supported by the FTIR and TGA/DSC data. This proposed process offers the possibility of using these synthesized nanocomposite materials in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.