Abstract
We proposed an in situ method to control the steady-state wafer temperature uniformity during thermal processing in microlithography. Thermal processing of wafer in the microlithography sequence is conducted by the placement of the wafer on the bake-plate for a given period of time. A physical model of the thermal system is first developed by considering energy balances on the system. Next, by monitoring the bake-plate temperature and fitting the data into the model, the temperature of the wafer can be estimated and controlled in real-time. This is useful as production wafers usually do not have temperature sensors embedded on it, these bake-plates are usually calibrated based on test wafers with embedded sensors. However, as processes are subjected to process drifts, disturbances, and wafer warpages, real-time correction of the bake-plate temperatures to achieve uniform wafer temperature at steady state is not possible in current baking systems. Any correction is done based on run-to-run control techniques which depends on the sampling frequency of the wafers. Our approach is real-time and can correct for any variations in the desired steady-state wafer temperature. Experimental results demonstrate the feasibility of the approach
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have