Abstract
We present a new micro-vision system for tool wear monitoring, which is essential for intelligent manufacturing. The tool wear area is divided into regions by a watershed transform, then subjected to automatic focusing and segmentation. The individual pixel gray values in each region are then replaced with the corresponding regional mean gray value. A hill climbing algorithm based on the sum modified laplacian (SML) focusing evaluation function is used to search the focal plane. In addition, we implement an adaptive Markov Random Field (MRF) algorithm to segment each region of tool wear. For our MRF model, the connection parameter value is adaptively determined by the connection degree between regions, which improves image acquisition of more integral tool wear areas. Our findings suggest that automatic focusing and segmentation of the tool wear area by region (within the tool wear area) enhance accuracy and robustness, and allow for real time acquisition of tool wear images. We also implement a complementary tool wear assessment procedure based on the surface texture of the workpiece. The optimal texture analysis window is determined using the entropy metric – a texture feature generated using a Gray Level Co-occurrence Matrix (GLCM). In the best texture analysis window, entropy remains monotonic as tool wear increases, demonstrating that entropy can be used effectively to monitor tool wear. Information from combined measurements of tool wear and workpiece texture can reliably be used to monitor tool wear conditions and improve monitoring success rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.