Abstract

In this article, the one-dimensional phenomenological constitutive model originally proposed by Brinson for shape memory alloys is improved to predict asymmetric behavior in tension and compression. We propose an approach that decomposes stress-induced martensite volume fraction into two parts, one in tension and one in compression. Results of numerical examples show reasonable agreement with experimental data. Moreover, we implement the proposed model in a user-defined material subroutine in the nonlinear finite element software ABAQUS/Standard as a two-dimensional Euler–Bernoulli beam element. We simulate several beam problems and a shape memory alloy staple. Regarding the results, the proposed shape memory alloys constitutive model, employed in a two-dimensional beam element, can be used to simulate various shape memory alloys applications in the design and analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.