Abstract
Shape memory alloy (SMA) staples in nickel titanium with shape memory effect are effective for spinal growth control. This study was designed to evaluate the biomechanical properties of the staples and observe the stability of the fixed segments spine after the staples were implanted. According to the vertical distance of the vertebrae, SMA staples of 5, 6.5, and 8 mm were designed. The recovery stress of 24 SMA staples in three groups was measured. The pullout strength of SMA staples and stainless steel staples in each functional spinal unit was measured. Each of the six fresh specimens was divided into three conditions: normal, single staple, and double staples. Under each condition, the angle and torque of spinal movements in six directions were tested. Results show that the differences in recovery stress and maximum pullout strength between groups were statistically significant. In left and right bending, flextion, and extention, the stability of spine was decreased in conditions of single staple and double staples. Biomechanical function of SMA staples was superior to stainless steel staple. SMA staples have the function of hemiepiphyseal compression and kyphosis and scoliosis model of thoracic vertebrae in goat could be successfully created by the fusionless technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.