Abstract

The fifth-order WENO-Z scheme proposed by Borges et al., using a linear combination of low-order smoothness indicators, is designed to provide a low numerical dissipation to solve hyperbolic conservation laws, while the power q in the framework of WENO-Z plays a key role in its performance. In this paper, a novel global smoothness indicator with fifth-order accuracy, which is based on several lower-order smoothness indicators on two-point sub-stencils, is presented, and a new lower-dissipation WENO-Z scheme (WENO-NZ) is developed. The spectral properties of the WENO-NZ scheme are studied through the ADR method and show that this new scheme can exhibit better spectral results than WENO-Z no matter what the power value is. Accuracy tests confirm that the accuracy of WENO-Z with q = 1 would degrade to the fourth order at first-order critical points, while WENO-NZ can recover the optimal fifth-order convergence. Furthermore, numerical experiments with one- and two-dimensional benchmark problems demonstrate that the proposed WENO-NZ scheme can efficiently decrease the numerical dissipation and has a higher resolution compared to the WENO-Z scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.