Abstract
Based on the unified creep and plasticity theory, an improved constitutive model is proposed in this study to describe the uniaxial mechanical behaviour of Sn3.0Ag0.5Cu (SAC305) solder alloy subjected to a wide range of strain rates. In the usual service condition of electronic devices, the strain rates of solder material are far less than 1.0 s−1 at which the creep deformation is dominant, especially at higher working temperatures. However, the strain rate could range from 1.0 to 300 s−1 under drop impact in electronic packaging structures, which is drawing more attention due to lack of experimental data, especially on dynamic mechanical properties of lead-free solder alloys. In extreme impact conditions, the solder material may experience even higher strain rates. As different mechanisms dominate the respective regime of strain rates, the developed constitutive model is calibrated to be applicable to most of the strain rate regimes by properly considering the coupled effect of creep and plasticity. Moreover, the parameters in the proposed model are defined with clear physical meanings and reasonably determined by regression to the published experimental studies. Lastly, the developed model is compared with other constitutive models from the literature, including the power-law equation for creep deformation at low strain rates and the Johnson–Cook model for plastic deformation at high strain rates. It is concluded that the proposed model is more generalized and capable of predicting uniaxial mechanical behaviour of SAC305 solder at low, medium and high strain rates with reasonable accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.