Abstract

Binary offset carrier (BOC) signal synchronization is one of the most important steps to recover the transmitted information in a global navigation satellite system (GNSS) such as Galileo and global positioning system (GPS). Generally, BOC signal synchronization is achieved based on the correlation between the received and locally generated BOC signals. Thus, the multiple side-peaks in BOC autocorrelation are one of the main error sources in synchronizing BOC signals. Recently, a novel correlation function with reduced side-peaks was proposed for BOC signal synchronization by Julien [8]; however, Julien's correlation function not only still has the side-peaks, but also is only applicable to sine phased BOC(n, n), where n is the ratio of the pseudo random noise (PRN) code rate to 1.023 MHz. In this paper, we propose a new correlation function for BOC signal synchronization, which does not have any side-peaks and is applicable to general types of BOC signals, sine/cosine phased BOC(kn, n), where k is the ratio of a PRN chip duration to the period of a square wave sub-carrier used in BOC modulation. In addition, an efficient correlator structure is presented for generating the proposed correlation function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.