Abstract

This paper proposes an improved technique on the stochastic functional approach for randomly rough surface scattering. Its first application is made on a TE plane wave scattering from a Gaussian random surface having perfect conductivity with infinite extent. The random wavefield becomes a ‘stochastic Floquet form’ represented by a Wiener–Hermite expansion with unknown expansion coefficients called Wiener kernels. From the effective boundary condition as a model of the random surface, a series of integral equations determining the Wiener kernels are obtained. By applying a quadrature method to the first three order hierarchical equations, a matrix equation is derived. By solving that matrix equation, the exact Wiener kernels up to second order are numerically obtained. Then the incoherent scattering cross-section and the optical theorem are calculated. A prediction is that the optical theorem always holds, which is derived from previous work is confirmed in a numerical sense. It is then concluded that the improved technique is useful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call