Abstract

Comprehensive sulfur-nitrosylation (SNO) proteome coverage in complex biological systems remains challenging as a result of the low level of endogenous S-nitrosylation and its chemical instability. Herein, we optimized the synthesis route of SNOTRAP (SNO trapping by triaryl phosphine) probe and the proteomics pipeline (including preventing over-alkylation, sample washing, trypsin digestion). Preventing overalkylation was found to be the key factor resulting in a higher number of identified SNO proteins by evaluating various experimental conditions. With the improved SNOTRAP-based proteomic pipeline, we achieved an improvement of ∼10-fold on identification efficiency, and identified 1181 SNO proteins (1714 SNO sites) in mouse brain, representing the largest repository of endogenous S-nitrosylation. Moreover, we identified the consensus motif of SNO sites, suggesting the correlation with local hydrophobicity, acid-base catalysis, and the surrounding secondary structures for modification of specific cysteines by NO. Collectively, we provide a universal pipeline for the high-coverage identification of low-abundance SNO proteins with high enrichment efficiency, high specificity (98%), good reproducibility, and easy implementation, contributing to the elucidation of the mechanism(s) of nitrosative stress in multiple diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call