Abstract

AbstractThe aim of this article is to develop a rotor reconstruction method for the V‐shaped interior permanent magnet (IPM) machine so that the subdomain method to analytically calculate the air‐gap flux density can be applied. With the proposed method, the V‐shaped IPM rotor with rectangular magnets, magnetic barriers, and saturated iron bridges can be transformed into a U‐shaped equivalent analytical model. The geometry and material parameters of the magnets in the equivalent U‐shaped model can be determined according to the flux equivalence in the air‐gap of the motor. Then using the subdomain method on the U‐shaped equivalent rotor, the static magnetic field problem can be solved and the flux density distribution in the air‐gap be obtained. The validity of this method and accuracy of the solution is verified by the finite element method with case studies. Compared with existing methods, the improved subdomain method has higher accuracy in calculating flux density including radial and tangential components. The presented rotor reconstruction method is not only limited to single‐layer V‐shaped rotor, it can also be applied to other IPM rotors with more complex structures. It is valuable in the design, optimisation of IPM motors, and even development of new rotor topology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call