Abstract
In recent years, the double-layered multi-head weighers whose hoppers are arranged in two levels are widely used in the accurate and reliable weighing for packing food products. The weighing processes are mathematically modeled into a single objective optimization problems. The objective of packing problem is to minimize the total weight of combined hoppers for a package under the condition that the total weight must be no less than a specified target weight. This paper proposes a novel single objective optimization approach for double-layered multi-head weighing process. More precisely, relying on a new bound on the optimal weight, this study accurately determines the number of hoppers to be combined at each packing operation, and find the best possible hopper combination using the single-objective algorithm. This method significantly speeds up the packing process as a whole. According to the present approach, the candidate number of hoppers to be combined can be taken one or two integral values. The probability that the accurate number of hoppers to be combined becomes one integral value is explicitly calculated, which is the performance factor to the previous one. In addition, results from the numerical experiments to show the effectiveness of the proposed approach are presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have