Abstract

Abstract An accurate pure qP-wave equation in transverse isotropic (TI) media and its efficient and stable implementation are valuable for seismic imaging and inversion. Owing to the complexity of the qP-wave phase velocity expression in anisotropic media, it is difficult to construct such a pure qP-wave equation. In this paper, we combine the Taylor expansion and scalar operator methods to formulate an efficient and stable pure qP-wave equation in TI media. First, the Taylor expansion method is used to convert the square-root term into a fractional term in the qP-wave phase velocity expression. We further improve the approximation accuracy of the resulting equation by a correction technique. Then, the scalar operator is applied to scalarize the equivalent form of the fractional term in the approximated dispersion equation, deriving a simple and easy-to-implement pure qP-wave equation. We use the optical flow method to compute the direction of wave propagation, which improves the calculation accuracy of the scalar operators. Numerical experiments with representative models demonstrate that the new method has higher accuracy and better adaptability to models with strong anisotropy, complex structure, and rapid variation of the tilt angle than previous methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.