Abstract

An improved polymer electrolyte membrane (PEM) fuel cell-based amperometric hydrogen sensor that operates at room temperature has been developed. The electrolyte used in the sensor is a PVA/H3PO4 blend, which is a proton-conducting solid polymer electrolyte. A thin film of palladium is used as the anode and platinum supported on carbon as the cathode. The sensor functions as a fuel cell, H2/Pd//PVA-H3PO4//Pt/O2, and the short-circuit current is found to be linearly related to the hydrogen concentration. The basic principle, details of assembly, response behaviour of the sensor and its application are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call