Abstract
In this paper, an improved robust vector control strategy is designed to drive the Permanent magnet synchronous motor in a wide speed range mode. The designed control method guarantees the precision and robustness of speed regulation performance by using recurrent neural network architecture. The stator current controller parameter tuning problems, which characterize this control strategy, are resolved using a bacterial foraging optimization algorithm to find the optimal parameters of the current controllers used. A field weakening control algorithm generates an adaptive magnetizing current command to achieve the desired high speed mode. The robustness and effectiveness of the global control scheme are verified through computer simulations established under a Matlab-Simulink environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.