Abstract

We present a simple parallel algorithm for computing the greatest common divisor (gcd) of twon-bit integers in the Common version of the CRCW model of computation. The run-time of the algorithm in terms of bit operations isO(n/logn), usingn 1+ɛ processors, where ɛ is any positive constant. This improves on the algorithm of Kannan, Miller, and Rudolph, the only sublinear algorithm known previously, both in run time and in number of processors; they requireO(n log logn/logn),n 2 log2 n, respectively, in the same CRCW model. We give an alternative implementation of our algorithm in the CREW model. Its run-time isO(n log logn/logn), usingn 1+ɛ processors. Both implementations can be modified to yield the extended gcd, within the same complexity bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.