Abstract

With the rapid development of artificial intelligence technology, the deep learning method has been introduced for vehicle trajectory prediction in the internet of vehicles, since it provides relative accurate prediction results, which is one of the critical links to guarantee security in the distributed mixed-driving scenario. In order to further enhance prediction accuracy by making full utilization of complex traffic scenes, an improved multimodal trajectory prediction method based on deep inverse reinforcement learning is proposed. Firstly, a fused dilated convolution module for better extracting raster features is introduced into the existing multimodal trajectory prediction network backbone. Then, a reward update policy with inferred goals is improved by learning the state rewards of goals and paths separately instead of original complex rewards, which can reduce the requirement for predefined goal states. Furthermore, a correction factor is introduced in the existing trajectory generator module, which can better generate diverse trajectories by penalizing trajectories with little difference. Abundant experiments on the current popular public dataset indicate that the prediction results of our proposed method are a better fit with the basic structure of the given traffic scenario in a long-term prediction range, which verifies the effectiveness of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.