Abstract

With the rapid development of artificial intelligent technology, the deep learning method is widely applied to predict human driving intentions due to its relative accuracy of prediction, which is one of critical links for security guarantee in the distributed, mixed driving scenario. In order to sense the intention of human-driven vehicles and reduce the self-driving collision avoidance rate, an improved intention prediction method for human-driving vehicles based on unsupervised, deep inverse reinforcement learning is proposed. Firstly, a contrast discriminator module was proposed to extract richer features. Then, the residual module was created to overcome the drawbacks of gradient disappearance and network degradation with the increase in network layers. Furthermore, the dropout layer was generated to prevent the over-fitting phenomenon in the whole training process of the GRU network, so as to improve the generalization ability of the network model. Finally, abundant experiments were conducted on datasets to evaluate our proposed method. The pass rate of self-driving vehicles with conservative driver probabilities of p = 0.25, p = 0.4, and p = 0.6 improved by a maximum of 8%, 10%, and 3%, compared with the classical method LSTM and VAE + RNN. It indicates that the prediction results of our proposed method fit more with the basic structure of the given traffic scenario in a long-term prediction range, which verifies the effectiveness of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.