Abstract
Random finite set (RFS) filters have been demonstrating a promising algorithm for tracking an unknown number of targets in real time. However, these methods can only be used in the multi-target tracking systems with known measurement noise variances; otherwise, their tracking performances will decline greatly. To solve this problem, an improved multi-target tracking algorithm is proposed based on the cardinality-balanced multi-target multi-Bernoulli (CBMeMBer) filter and the variational Bayesian (VB) approximation technique to recursively estimate the joint posterior distributions of the multi-target states and the time-varying measurement noise variances. First, the variational calculus method is employed to derive the multi-target estimate recursions, and then the Gaussian and inverse Gamma mixture distributions are introduced to approximate the joint posterior density, and achieve a Gaussian closed-form solution. Simulation results show that the proposed algorithm can effectively estimate the unknown measurement noise variances and has a good performance of multi-target tracking with a strong robustness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have