Abstract

In this work, advanced learning and moving window-based methods have been used for epileptic seizure detection. Epilepsy is a disorder of the central nervous system and roughly affects 50 million people worldwide. The most common non-invasive tool for studying the brain activity of an epileptic patient is the electroencephalogram. Accurate detection of seizure onset is still an elusive work. Electroencephalogram signals belonging to pediatric patients from Children’s Hospital Boston, Massachusetts Institute of Technology have been used in this work to validate the proposed method. For determining between seizure and non-seizure signals, feature extraction techniques based on time-domain, frequency domain, time-frequency domain have been used. Four different methods (decision tree, random forest, artificial neural network, and ensemble learning) have been studied and their performances have been compared using different statistical measures. The test sample technique has been used for the validation of all seizure detection methods. The results show better performance by random forest among all the four classifiers with an accuracy, sensitivity, and specificity of 91.9%, 94.1%, and 89.7% respectively. The proposed method is suggested as an improved method because it is not channel specific, not patient specific and has a promising accuracy in detecting epileptic seizure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.