Abstract

Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significantly better than their sphere decoding counterparts with relatively low complexity. However, the MCMC simulator is likely to get trapped in a fixed state when the channel SNR is high, thus lots of repetitive samples are observed and the accuracy of A Posteriori Probability (APP) estimation deteriorates. To solve this problem, an improved version of MCMC simulator, named forced-dispersed MCMC algorithm is proposed. Based on the a posteriori variance of each bit, the Gibbs sampler is monitored. Once the trapped state is detected, the sample is dispersed intentionally according to the a posteriori variance. Extensive simulation shows that, compared with the existing solution, the proposed algorithm enables the markov chain to travel more states, which ensures a near-optimal performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.